ارزیابی قابلیت مدل سیستم استنتاجی فازی عصبی(ANFIS) در تخمین مقادیر بار معلق رسوبی و مقایسه آن با 2 نوع از مدل‌های شبکه‌ی عصبی مصنوعی مطالعه موردی: رودخانه زرینه‌‌رود، حوضه جنوب‌شرقی دریاچه ارومیه

Authors

  • سحر صدرافشاری
  • علی‌محمد خورشیددوست
  • مهدی فیض‌اله‌پور
Abstract:

حوضه‌های جنوب شرقی دریاچه ارومیه به علت برخورداری از شرایط هیدرولوژیکی و لیتولوژیکی خواص، از میزان بالای تولید رسوب برخوردارند. با توجه به این نکته در این تحقیق برای تخمین بار معلق رسوبی روزانه از سیستم استنتاجی فازی عصبی([1]ANFIS) بهره گرفته شده است. به این منظور داده‌های دبی روزانه و بار معلق رسوبی365 روز سال 1386 و 1387 ایستگاه رسوبی واقع در رودخانه زرینه رود برای تعلیم و آزمودن مدل‌های شبکه عصبی مصنوعی مورد استفاده قرار گرفته است. در کنار این مدل از مدل‌های پرسپترون چندلایه([2]MLP)، شبکه عصبی تابع پایه شعاعی([3]RBF)و منحنی سنجه رسوبی ([4]SRC) نیز بهره گرفته شد. سپس نتایج مدل ANFISبا مدل‌های فوق مقایسه گردید. برای تعیین کارایی مدل‌ها از فاکتور مجذور میانگین مربعات خطا (RMSE)و خطای تبیین (R2)استفاده شده و مشاهده می‌شود که مدل ANFIS با برخورداری از خطای تبیین معادل 9087/0 و مجذور میانگین مربعات خطای معادل 224 میلیگرم در لیتر نسبت به سایر مدل‌ها به نتایج بهتری دست می‌یابد. کمترین میزان R2 و RMSEنیز برای مدل SRC به ترتیب معادل 8251/0 و 304 برآورد گردید. مقادیر آکائیک نیز برای مدل ANFIS معادل 1993 محاسبه شد که این امر نشان‌دهنده‌ی قابلیت بالای مدل ANFIS در تخمین بار معلق رسوبی می‌باشد. [1]-Artificial neural fuzzy inference system [2]-Multi layer perceptron [3]-Radial basis function [4]-Sediment rating curve

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی قابلیت مدل سیستم استنتاجی فازی عصبی(anfis) در تخمین مقادیر بار معلق رسوبی و مقایسه آن با ۲ نوع از مدل های شبکه ی عصبی مصنوعی مطالعه موردی: رودخانه زرینه رود، حوضه جنوب شرقی دریاچه ارومیه

حوضه های جنوب شرقی دریاچه ارومیه به علت برخورداری از شرایط هیدرولوژیکی و لیتولوژیکی خواص، از میزان بالای تولید رسوب برخوردارند. با توجه به این نکته در این تحقیق برای تخمین بار معلق رسوبی روزانه از سیستم استنتاجی فازی عصبی([1]anfis) بهره گرفته شده است. به این منظور داده های دبی روزانه و بار معلق رسوبی365 روز سال 1386 و 1387 ایستگاه رسوبی واقع در رودخانه زرینه رود برای تعلیم و آزمودن مدل های شبکه...

full text

استفاده از مدل تبرید تدریجی عصبی (NDE) در تخمین بار معلق رسوبی و مقایسه‌ی آن با مدل ANFIS و RBF مطالعه موردی: رودخانه گیوی‌چای

در این تحقیق، مدل تبرید تدریجی عصبی (NDE)با بهره‌گیری از ترکیب‌های ورودی مختلف برای تخمین بار معلق رسوبی روزانه به کار گرفته شد. به این منظور در اولین بخش از تحقیق، مدل NDEبا استفاده از داده‌های دبی روزانه و بار معلق رسوبی روزهای پیشین تعلیم داده شده و برای تخمین بار معلق رسوبی رودخانه گیوی‌چای مورد استفاده قرار گرفت. در دومین بخش از تحقیق، مدل NDE با استفاده از پارامترهای ضریب تبیین (R2) و خطا...

full text

استفاده از مدل تبرید تدریجی عصبی (nde) در تخمین بار معلق رسوبی و مقایسه ی آن با مدل anfis و rbf مطالعه موردی: رودخانه گیوی چای

در این تحقیق، مدل تبرید تدریجی عصبی (nde)با بهره گیری از ترکیب های ورودی مختلف برای تخمین بار معلق رسوبی روزانه به کار گرفته شد. به این منظور در اولین بخش از تحقیق، مدل ndeبا استفاده از داده های دبی روزانه و بار معلق رسوبی روزهای پیشین تعلیم داده شده و برای تخمین بار معلق رسوبی رودخانه گیوی چای مورد استفاده قرار گرفت. در دومین بخش از تحقیق، مدل nde با استفاده از پارامترهای ضریب تبیین (r2) و خطا...

full text

پهنه بندی مناطق مستعد به زمین لغزش با استفاده از سیستم استنتاجی فازی عصبی(ANFIS)(مطالعه موردی: حوضه رودخانه سنگورچای)

در این تحقیق برای پهنه‌‌بندی زمین لغزش در حوضه رودخانه سنگورچای از مدل سیستم استنتاجی فازی عصبی (ANFIS) استفاده شد. به این منظور، داده‌‌های 124 زمین لغزش، شناسایی شده و برای انجام فرایند تحلیل و پردازش به سیستم ارائه شد. در کنار آن برای پردازش زمین لغزش‌‌ها، 8 لایه متشکل از لایه‌‌های شیب، جهت شیب، DEM، لیتولوژی، شبکه هیدروگرافی،لایه NDVI، گروه خاک و پراکنش زمین لغزش ترسیم گردید. برای پردازش لای...

full text

استفاده از سیستم استنتاجی فازی عصبی در تخمین بار رسوبی و مقایسۀ آن با مدل‎های MLR وSRC در حوضۀ رودخانۀ قرانقو

انتقال رسوب‎ها در رودخانه‎ها با توجه به نقش آنها در مباحث هیدرولوژیکی، از اهمیت ویژه‎ای برخوردار است. این رسوب‎ها به روش‎های گوناگون اندازه‎گیری می‎شوند. اندازه‎گیری مستقیم بار معلق رسوبی در رودخانه، هزینه‎بر بوده و امکان احداث ایستگاه‎های اندازه‎گیری در تمام طول رودخانه وجود ندارد. همچنین معادله‎های مورد استفاده در تخمین بار رسوبی، برای تمام مناطق قابل استفاده نبوده و علاوه‎بر آن، نیازمند دیده...

full text

مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)

زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد.  روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 41

pages  185- 200

publication date 2015-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023